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Introduction 
                   The differential transformation method was first introduced by Zhou (1986), who solved linear and non-linear problems in 

electrical circuit problems. The differential transform method is one of the numerical method for partial differential equation which uses the 

form of polynomials as the approximation to the exact solution. Chen and Ho (1999) developed this method for partial differential 

equations and Ayaz applied it to the system of differential equations. In this method has been used for differential algebraic equations, 

Partial differential equations, fractional differential equations, volterra integral equations and difference equations. This method has been 

utilized for Telegraph equation. 

                   In this paper, the differential transform method has been utilized for solving the following, partial differential equation. The 

method can be used to evaluate the approximate solution by the finite taylor series and by an iterative process describing by the transformed 

equations obtained from the original equation using the operator of differential transformation. 

                  There are many problems arising in science and engineering are modelled using linear or nonlinear partial differential 

equations (PDEs). Boundary and initial value problems in PDEs occur in fluid mechanics, mathematical physics, astrophysics, biology, 

materials science, electromagnetism, image processing, computer graphics, etc. PDEs are categorized into different types, including elliptic, 

parabolic, and hyperbolic PDE. These PDEs describe various physical phenomenon including deformation of beams, viscoelastic and 

inelastic flows, transverse vibrations of a homogeneous beam, plate deflection theory, engineering and applied sciences. In recent years, 

various methods have been proposed for solving the fourth-order parabolic PDEs, such that adomain decomposition method (ADM), 

variational iteration method (VIM), B-spline methods, homotopy pertubation method (HPM) and homotopy analysis method (HAM). 

 

   Definition  

              Consider        is analytic and differentiated continuously in the domain of interest, then let  
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 Where the spectrum      is the transformed function, which is called T-function. 

 

Definition  

               The differential inverse transform of       is defined as follows: 

                                 ∑            
  

   ,                                                                 (2)                             

  Substituting equation (1) in (2), we get 
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  When (  ) are taken as     ) then equation (3) is expressed as 
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  And equation (2) is shown as 

                                 ∑       
  

   ,                                                                            (4)                               

  In real application, the function        by a finite series of equation (4) can be written as  

                                 ∑       
  

   ,                                                                            (5) 

  Usually, the values of n is decided by convergence of the series coefficients. 

 

Example 1 
Consider the one-dimensional heat equation with variable coefficients in the form  

                             
  

 
                                                                                 (6) 

And the initial condition  

                             ,                                                                                                    (7) 
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 Where          is a function of the variables x and t.                                                    

 The exact solution of this problem is                   . Then, by using the reduced differential transformation, we can find the 

transformed form of equation (6) as, 

                                 
  

 

  

           
 

  
     ,                                                 (8) 

Using the initial condition, equation (7), we have 

                            ,                                                                                                      (9) 

Now, substituting equation (9) into (8), we obtain the following       values successively 
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,                                                                                                          

Finally the differential inverse transform of       gives: 

         ∑       
  

              ∑
  

  

 
                                                          

Then, the exact solution is given as 

                  .                                                                                                 

 

Example 2 
Consider the two-dimensional heat equation with variable coefficients as 

             
  

 
           

  

 
                                                  (10) 

Where the initial condition is 

                                                                                                                                 (11) 

Taking differential transform of equation (10) and the initial condition equation (11) respectively, 

                    

               

                                                               (12) 

Using the initial condition equation (11), we have  

                                                                                                                                  (13) 

Now, substituting equation (13) into (12), we obtain the following         values successively, 
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Finally the differential inverse transform of         gives: 
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Then, the exact solution is given by, 
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Which is the exact solution of the given equation. 

 

Example 3 

 Consider the one-dimensional wave equation with variable coefficient as 

          
  

 
                                                                                                  (14) 

With an initial condition 

                                                                                                                       (15) 

Taking differential transform of equation (14), we get 

                   
  

 

  

         
 

  
                                                                (16) 

Using the initial condition equation (15), we have 

                                                                                                                         (17) 

Now, substituting equation (17) into (16), we obtain the following       values successively 

                     

By applying the k values are k = 1,3,5,… 

         
 

 
                 

 

   
               

         
 

    
                           

          
 

  
                                                                             

 Finally the differential inverse transform of       gives: 

        ∑   
 
                 (    

  

 
   

  

  
)                                 

Thus, the exact solution is given by, 

                     .                                                                                              
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Example 4 

Consider the two dimensional  wave equation is of the form 

                                                                                               (18) 

With an initial condition 

                                                                                                                (19) 

Taking differential transform of equation (18) and the initial condition equation (19) respectively, we have 

                  
  

         
  

                                                         (20) 

Using the initial condition, equation (19), we have 

                                                                                                                  (21) 

Substituting equation (21) into (20), we obtain the following        values successively    

                     

By applying the k values are k = 2,4,6,… 

      
 

 
        

 

  
        

 

   
                                                                                                           

       
 

  
 

Finally the differential inverse transform of        gives: 

       ∑       
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  )         

Then, the exact solution is given by 

                 .                                                                                         

 

Conclusion 

            The differential transform method has been successfully, applied for solving linear and homogeneous partial differential equations 

with variable co-efficients. The solution is obtained by differential transform method is an infinite power series for appropriate initial 

condition, which can in turn express the exact solutions in a closed form. Thus we conclude that the proposed by this method can be 

extended to solve many PDEs with variable co-efficients which arise in physical and engineering applications. 
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